Abstract

In this paper, a robust nonlinear control design using an operator-based robust right coprime factorization approach is considered for vibration control on an aircraft vertical tail with piezoelectric elements. First, a model of the aircraft vertical tail is derived to describe vibration response using the operator-based approach, where, to stabilize vibration of the tail, piezoelectric elements are used as actuators and a hysteresis nonlinear property of piezoelectric actuators is considered. Simultaneously, positions of the piezoelectric actuators that are stuck on the plate are arranged by using a finite element method. Then based on the obtained operator-based model, a robust nonlinear feedback control design is given by using robust right coprime factorization for the aircraft vertical tail with considering the effect of hysteresis nonlinearity from piezoelectric actuators. In particular, low-order modes are employed to design the control scheme even though vibration is configured by high-order modes. In other words, robustness is considered, and the desired performance of tracking is discussed. Finally, both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call