Abstract
This paper gives the optimal order l of smoothness in the Mihlin and Hörmander conditions for operator-valued Fourier multiplier theorems. This optimal order l is determined by the geometry of the underlying Banach spaces (e.g. Fourier type). This requires a new approach to such multiplier theorems, which in turn leads to rather weak assumptions formulated in terms of Besov norms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.