Abstract

Many numerical methods for systems of convection–diffusion equations are based on an operator splitting formulation, where convective and diffusive forces are accounted for in separate substeps. We describe the nonlinear mechanism of the splitting error in such numerical methods in the one-dimensional case, a mechanism that is intimately linked to the local linearizations introduced implicitly in the (hyperbolic) convection steps by the use of an entropy condition. For convection-dominated flows, we demonstrate that operator splitting methods typically generate a numerical widening of viscous fronts, unless the splitting step is of the same magnitude as the diffusion scale. To compensate for the potentially damaging splitting error, we propose a corrected operator splitting (COS) method for general systems of convection–diffusion equations with the ability of correctly resolving the nonlinear balance between the convective and diffusive forces. In particular, COS produces viscous shocks with a correct structure also when the splitting step is large. A front tracking method for systems of conservation laws, which in turn relies heavily on a Riemann solver, constitutes an important part of our COS strategy. The proposed COS method is successfully applied to a system modeling two-phase, multicomponent flow in porous media and a triangular system modeling three-phase flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call