Abstract

This article applies splitting techniques developed for set-valued maximal monotone operators to monotone affine variational inequalities, including, as a special case, the classical linear complementarity problem. We give a unified presentation of several splitting algorithms for monotone operators, and then apply these results to obtain two classes of algorithms for affine variational inequalities. The second class resembles classical matrix splitting, but has a novel “under-relaxation” step, and converges under more general conditions. In particular, the convergence proofs do not require the affine operator to be symmetric. We specialize our matrix-splitting-like method to discrete-time optimal control problems formulated as extended linear-quadratic programs in the manner advocated by Rockafellar and Wets. The result is a highly parallel algorithm, which we implement and test on the Connection Machine CM-5 computer family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.