Abstract

A weakly continuous, equicontinuous representation of a semitopological semigroup S S on a locally convex topological vector space X X gives rise to a family of operator semigroup compactifications of S S , one for each invariant subspace of X X . We consider those invariant subspaces which are maximal with respect to the associated compactification possessing a given property of semigroup compactifications and show that under suitable hypotheses this maximality is preserved under the formation of projective limits, strict inductive limits and tensor products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.