Abstract
The operator Schmidt rank of an operator acting on the tensor product Cn⊗Cm is the number of terms in a decomposition of the operator as a sum of simple tensors with factors forming orthogonal families in their respective matrix algebras. It has been known that for unitary operators acting on two copies of C2, the operator Schmidt rank can only take the values 1, 2, and 4, the value 3 being forbidden. In this paper, we settle an open question, showing that the above obstruction is the only one occurring. We do so by constructing explicit examples of bipartite unitary operators of all possible operator Schmidt ranks, for arbitrary dimensions (n,m)≠(2,2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.