Abstract
We exploit the mirror and complementary symmetries of elementary cellular automata (ECAs) to rewrite their rules in terms of logical operators. The operator representation based on these fundamental symmetries enables us to construct a periodic table of ECAs that maps all unique rules in clusters of similar asymptotic behavior. We also expand the elementary cellular automaton (ECA) dynamics by introducing a parameter that scales the pace with which operators iterate the system. While tuning this parameter continuously, further emergent behavior in ECAs is unveiled as several rules undergo multiple phase transitions between periodic, chaotic and complex (class 4) behavior. This extension provides an environment for studying class transitions and complex behavior in ECAs. Moreover, the emergence of class 4 structures can potentially enlarge the capacity of many ECA rules for universal computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.