Abstract

In this work, an operator superquadratic function (in the operator sense) for positive Hilbert space operators is defined. Several examples with some important properties together with some observations which are related to the operator convexity are pointed out. A general Bohr’s inequality for positive operators is thus deduced. A Jensen-type inequality is proved. Equivalent statements of a non-commutative version of Jensen’s inequality for operator superquadratic function are also established. Finally, several trace inequalities for superquadratic functions (in the ordinary sense) are provided as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.