Abstract

The localization formula of Chern-Simons quiver gauge theory on $S^3$ nicely reproduces the geometric data such as volume of Sasaki-Einstein manifolds in the large-$N$ limit, at least for vector-like models. The validity of chiral-like models is not established yet, due to technical problems in both analytic and numerical approaches. Recently Gulotta, Herzog and Pufu suggested that the counting of chiral operators can be used to find the eigenvalue distribution of quiver matrix models. In this paper we apply this method to some vector-like or chiral-like quiver theories, including the triangular quivers with generic Chern-Simons levels which are dual to in-homogeneous Sasaki-Einstein manifolds $Y^{p,k}(\mathbb{CP}^2)$. The result is consistent with AdS/CFT and the volume formula. We discuss the implication of our analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.