Abstract
An operator-based framework for the construction of analytical soliton solutions to fractional differential equations is presented in this paper. Fractional differential equations are mapped from Caputo algebra to Riemann-Liouville algebra in order to preserve the additivity of base function powers under multiplication. The proposed technique is used for the construction of solutions to a class of fractional Riccati equations. Recurrence relations between power series parameters yield generating functions which are used to construct explicit expressions of closed-form solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.