Abstract
The conjugacy problem for the pseudo-Anosov automorphisms of a compact surface is studied. To each pseudo-Anosov automorphism f, we assign an AF-algebra A(f) (an operator algebra). It is proved that the assignment is functorial, i.e. every f', conjugate to f, maps to an AF-algebra A(f'), which is stably isomorphic to A(f). The new invariants of the conjugacy of the pseudo-Anosov automorphisms are obtained from the known invariants of the stable isomorphisms of the AF-algebras. Namely, the main invariant is a triple (L, [I], K), where L is an order in the ring of integers in a real algebraic number field K and [I] an equivalence class of the ideals in L. The numerical invariants include the determinant D and the signature S, which we compute for the case of the Anosov automorphisms. A question concerning the p-adic invariants of the pseudo-Anosov automorphism is formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.