Abstract

We study the structure of operator algebras associated with the foliations which have projectively invariant measures. When a certain ergodicity condition on the measure preserving holonomies holds, the lack of holonomy invariant transverse measure can be established in terms of a cyclic cohomology class associated with the transverse fundamental cocycle and the modular automorphism group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.