Abstract

Liposomes are spherical vesicles formed by a inner aqueous core and a double lipidic layer around it. Conventional techniques for the production of liposomes are characterized by several drawbacks, like the production of micrometric vesicles, a difficult control of the Particle Size Distribution (PSD) and low encapsulation efficiencies (EE) of hydrophilic compounds. Many supercritical semi-continuous techniques were proposed in literature. They are successful in the intent of producing liposomes of smaller diameter, but the EE of hydrophilic compounds and the reproducibility are still a challenge. For this reason, it was recently proposed a new supercritical process whose aim is to invert the steps of production of liposomes, by first creating water droplets and then to fast surround them by phospholipids. We discovered that the high diffusion coefficient of phospholipids in supercritical carbon dioxide allows a fast coverage of water droplets preserving the drug content into the liposome core. In this work, hydrophilic compounds were encapsulated in the vesicles produced using SuperLip, such as Fluorescein, Bovine Serum Albumin (BSA) and Ampicillin, obtaining monodispersed spherical vesicles with a mean size from 100 to 300 nm. Operative parameters like water flow rate and lipid to water mass ratio were optimized. The EEs were evaluated with UV-Vis spectroscopy according to methods reported in literature, and obtaining high values up to 99 % for the three investigated compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.