Abstract
In this work, an extension of the algebraic formulation of the operational Tau method (OTM) for the numerical solution of the linear and nonlinear fractional integro-differential equations (FIDEs) is proposed. The main idea behind the OTM is to convert the fractional differential and integral parts of the desired FIDE to some operational matrices. Then the FIDE reduces to a set of algebraic equations. We demonstrate the Tau matrix representation for solving FIDEs based on arbitrary orthogonal polynomials. Some advantages of using the method, errorestimation and computer algorithm are also presented. Illustrative linear and nonlinear experiments are included to show the validity and applicability of the presented method. Mathematical subject classification: 65M70, 34A25, 26A33, 47Gxx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.