Abstract

The main objective of this work was to evaluate the operational stability of a laboratory-scale aerobic biobarrier designed for the treatment of water contaminated by mixtures of three herbicides frequently found in agricultural runoffs, atrazine, simazine and 2,4-dichlorophenoxyacetic acid (2,4-D). The microbial consortium used to degrade the herbicides was composed by six cultivable bacterial strains, identified as members of the genera Variovorax, Sphingopyxis, Hydrocarboniphaga, Methylobacterium, Pseudomonas and Acinetobacter. The effect caused by a seventh member of the microbial consortium, a ciliated protozoa of the genus Colpoda, on the herbicides biodegradation kinetics, was also evaluated. The biodegradation of five combinations of the herbicides 2,4-D, atrazine and simazine was studied in the biobarrier, operated in steady state continuous culture at different volumetric loading rates. In all cases, removal efficiencies determined by chemical oxygen demand (COD) and HPLC were nearly 100%. These results, joined to the null accumulation of aromatic byproducts of atrazine and simazine catabolism, show that after 495days of operation, in the presence of the protozoa, the adaptability of the microbial consortium to changing environmental conditions allowed the complete removal of the mixture of herbicides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.