Abstract
Robotic platforms are typically designed to interact with the environment at specific task space nodes on the system. For a manipulator, the set of task space nodes may consist of a single end-effector node. For a humanoid system, the arm end-effectors are task space nodes, while the feet are such nodes for legged systems. The set of task space nodes define the operational space of the system. The control problem requires managing the motion state as well as the force interactions with the envi- ronment for the task space nodes. Operational space control (OSC) is an approach to robot system control that focuses on the dynamical behavior of a system from the task (or operational) space perspective [100–103]. It is especially useful for ap- plications involving contact between the end-effector and the environment, such as occurs in hybrid force/position control, or for artificial potential field approaches to collision avoidance and path planning. The advantage of the OSC approach over joint space control is that the control problem is posed directly in terms of task space variables. One issue is the added analytical and computational complexity of operational space dynamics. As will be seen in later chapters, the importance of operational space dynamics quantities extends to the dynamics of systems subject to closure constraints, as well as to the dynamics of under-actuated and free-flying systems. In this chapter, we study and analyze operational space dynamics and as- sociated efficient computational algorithms for a robotic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.