Abstract

Operational risk models commonly employ maximum likelihood estimation (MLE) to fit loss data to heavy-tailed distributions. Yet several desirable properties of MLE (e.g., asymptotic normality) are generally valid only for large sample sizes, a situation that is rarely encountered in operational risk. In this paper, we study how asymptotic normality does, or does not, hold for common severity distributions in operational risk models. We then apply these results to evaluate errors caused by failure of asymptotic normality in constructing confidence intervals around the MLE fitted parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.