Abstract
This study explores the impacts of increased photovoltaic (PV) penetration on a real-world power grid. Detailed operational scenarios of existing distributed energy technologies, including grid-tied PV, heat pump, micro-cogeneration, and battery systems among smart residential prosumers are examined using smart meter data. Then, to quantify the grid-support interactions of the decentralized electricity generation and consumption under high grid PV penetration, we introduce grid-support indicators to recognize their induced month-to-month variations based on the dynamic grid spot trading price and carbon emission density profiles. The results show that increased electricity consumption is attractive when the flexible consumption is shifted to a low grid spot trading price and carbon emission intensity period. The grid-support benefits of distributed generators are improved when their output enables a reduction in imported electricity during the grid residual load peak period. The direct simple integration of distributed PV generation makes it difficult to achieve grid-support operation at high solar penetration levels. The analysis results provide insight into the favorable scheduling of the heat pump consumption for time periods corresponding to a large quantity of available on-site PV generation to improve the grid-support performance. The results would help policymakers govern grid-support assets more equitably from a system-level perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.