Abstract

We introduce two operational entanglement measures that are applicable for arbitrary multipartite (pure or mixed) states. One of them characterizes the potentiality of a state to generate other states via local operations assisted by classical communication and the other characterizes the simplicity of generating the state at hand. We show how these measures can be generalized to two classes of entanglement measures. Moreover, we compute the new measures for pure few-partite systems and use them to characterize the entanglement contained in a three-qubit state. We identify the Greenberger-Horne-Zeilinger and W state as the most powerful pure three-qubit states regarding state manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.