Abstract

Vibrations represent one of the most important topics of the engineering design relevant to flexible structures. The importance of this problem increases when a very flexible system is considered, and this is often the case of space structures. In order to identify the modal characteristics, in terms of natural frequencies and relevant modal parameters, ground tests are performed. However, these parameters could vary due to the operative conditions of the system. In order to continuously monitor the modal characteristics during the satellite lifetime, an operational modal analysis is mandatory. This kind of analysis is usually performed by using classical accelerometers or strain gauges and by properly analyzing the acquired output. In this paper a different approach for the vibrations data acquisition will be performed via image-based technique. In order to simulate a flexible satellite, a free flying platform is used; the problem is furthermore complicated by the fact that the overall system, constituted by a highly rigid bus and very flexible panels, must necessarily be modeled as a multibody system. In the experimental campaign, the camera, placed on the bus, will be used to identify the eigenfrequencies of the vibrating structure; in this case aluminum thin plates simulate very flexible solar panels. The structure is excited by a hammer or studied during a fast attitude maneuver. The results of the experimental activity will be investigated and compared with respect to the numerical simulation obtained via a FEM-multibody software and the relevant results will be proposed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.