Abstract

The Chicago Area Waterway System (CAWS) is a 133.9 km branching network of navigable waterways controlled by hydraulic structures, in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows. The CAWS comprises a network of effluent dominated streams. More stringent dissolved oxygen (DO) standards and a reduced flow augmentation allowance have been recently applied to the CAWS. Therefore, a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations. The goal of these guidelines was to attain DO standards at least 95% of the time. The “optimal” guidelines were tested for representative normal, dry, and wet years. The finally proposed guidelines were found in the simulations to attain the 95% target for nearly all locations in the CAWS for the three test years. The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system, greatly lowered energy use on the Chicago River system, and greatly lowered discretionary diversion from Lake Michigan, meeting the recently enacted lower amount of allowed annual discretionary diversion. This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call