Abstract
The continuous scanning laser Doppler vibrometry (CSLDV) technique is usually used to evaluate the vibration operational deflection shapes (ODSs) of structures with continuous surfaces. In this paper, an extended CSLDV is demonstrated to measure the non-continuous surface of the bladed disk and to obtain the ODS efficiently. For a bladed disk, the blades are uniformly distributed on a given disk. Although the ODS of each blade can be derived from its response data along the scanning path with CSLDV, the relative vibration direction between different blades cannot be determined from those data. Therefore, it is difficult to reconstruct the complete vibration mode of the whole blade disk. In order to measure the complete ODS of the bladed disk, a method based on ODS frequency response functions (ODS FRFs) has been proposed. While the ODS of each blade is measured by designing the suitable scanning paths in CSLDV, an additional response signal is obtained at a fixed point as the reference signal to identify the relative vibration phase between the blade and the blade of the bladed disk. Finally, a measurement is performed with a simple bladed disk and the results demonstrate the feasibility and effectiveness of the proposed extended CSLDV method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.