Abstract

The European electricity grid is subject to increasing stresses due to increasing share of volatile renewable energy technologies. These technologies, coupled with higher volatility in demand, pose challenges to the stability and security of the European grid, erstwhile dominated by large and relatively reliable conventional generation. As the contribution of wind and photovoltaic generation increases in the energy mix, it demands an assessment of the corresponding risk to frequency stability and possible preventive measures. Uncontrolled charging of the increasing number of electric vehicles in Germany also demands a thorough investigation of methods for their integration in the electricity grid to not only improve grid frequency stability but also to provide secondary benefits to electric vehicle users. This work analyzes the load frequency control systems for their suitability for integration of electric vehicles and the impact of increase in volatile renewable energy on frequency stability for the case of Germany, showing a significant increase in reserve requirements. Evaluation of alternative approaches to load frequency control on the basis of infrastructure requirements shows that introduction of an aggregator of distributed energy resources can significantly reduce the overall infrastructure requirements for grid operators. The operational concepts herein proposed are evaluated using several case studies for optimizing the use of electric vehicles for grid flexibility services by taking into account the usage requirements of the vehicle owner and supply requirements of grid services.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call