Abstract

A proper cryogenic environment is essential for the operation of superconducting devices. A test area for the superconducting radio-frequency modules (SRF) has been established in the RF laboratory at National Synchrotron Radiation Research Center in Taiwan; these modules require much liquid helium during conditioning and performance tests; a cooling capacity of 120 W is expected for the acceptance test of the SRF module. The cryogenic environment of the test area is completed on transferring the liquid helium over a remarkable length of 205 m from the two cryogenic plants at Taiwan Light Source, with a valve box located at each end to control and to measure the cryogenic flow. Flexible cryogenic transfer lines of concentric four-tube type are chosen for both the supply of liquid helium and the return of cold helium gas. Functional examination of this long transfer system was first achieved with a 500-L Dewar in the radio-frequency laboratory; an SRF module was then installed in the test area for practical operation. The primary concern about the cryogenic transfer system is the heat loss; a measurement technique based on the principle of thermodynamics is developed and proposed herein. With the available sensors inside the valve boxes and the heaters inside the 500-L Dewar and the test SRF module, this technique has proved promissing from the measured results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.