Abstract

Abstract In this study, we developed and evaluated the Korean Forecast Icing Potential (K-FIP), an in-flight icing forecast system for the Korea Meteorological Administration (KMA) based on the simplified forecast icing potential (SFIP) algorithm. The SFIP is an algorithm used to postprocess numerical weather prediction (NWP) model forecasts for predicting potential areas of icing based on the fuzzy logic formulations of four membership functions: temperature, relative humidity, vertical velocity, and cloud liquid water content. In this study, we optimized the original version of the SFIP for the global NWP model of the KMA through three important updates using 34 months of pilot reports for icing as follows: using total cloud condensates, reconstructing membership functions, and determining the best weight combination for input variables. The use of all cloud condensates and the reconstruction of these membership functions resulted in a significant improvement in the algorithm compared with the original. The weight combinations for the KMA’s global model were determined based on the performance scores. While several sets of weights performed equally well, this process identified the most effective weight combination for the KMA model, which is referred to as the K-FIP. The K-FIP demonstrated the ability to successfully predict icing over the Korean Peninsula using observations made by research aircraft from the National Institute of Meteorological Sciences of the KMA. Eventually, the K-FIP icing forecasts will provide better forecasts of icing potentials for safe and efficient aviation operations in South Korea. Significance Statement In-flight aircraft icing has posed a threat to safe flights for decades. With advances in computing resources and an improvement in the spatiotemporal resolutions of numerical weather prediction (NWP) models, icing algorithms have been developed using NWP model outputs associated with supercooled liquid water. This study evaluated and optimized the simplified forecast icing potential, an NWP model–based icing algorithm, for the global model of the Korean Meteorological Administration (KMA) using a long-term observational dataset to improve its prediction skills. The improvements shown in this study and the SFIP implemented in the KMA will provide more informative predictions for safe and efficient air travel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.