Abstract
According to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA/GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accuracy, efficiency, robustness, scalability and timeliness of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. The present first paper provides a multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches that augments similar analyses proposed in recent years. In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification. Hence, a symbolic deductive pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the second part of this work a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design); (b) information/knowledge representation; (c) algorithm design; and (d) implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.
Highlights
This methodological work aims at one traditional, albeit visionary goal of the remote sensing (RS)community: the development of operational satellite-based information/knowledge processing systems capable of automating the quantitative analysis of large-scale spaceborne multi-source multi-resolution image databases ([1]; p. 451), in compliance with the guidelines of the Quality Assurance Framework for Earth Observation (QA4EO) delivered by the Working Group on Calibration and Validation (WGCV) of the Committee on Earth ObservationSatellites (CEOS), the space arm of the Group on Earth Observations (GEO) [2].According to the terminology adopted in this work, satellite-based information/knowledge processing systems include satellite-based measurement systems as a special case
In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based image segmentation to symbolic physical model-based image preliminary classification
Vecera and Farah: ―we have demonstrated that image segmentation can be influenced by the familiarity of the shape being segmented‖, ―these results are consistent with the hypothesis that image segmentation is an interactive process‖ ―in which top-down knowledge partly guides lower level processing‖. ―If an unambiguous, yet unfamiliar, shape is presented, top-down influences are unable to overcome powerful bottom-up cues
Summary
This methodological work aims at one traditional, albeit visionary goal of the remote sensing (RS). GEOBIA/GEOOIA systems, an alternative hybrid RS-IUS design is required to accomplish a shift of learning paradigm in the pre-attentive vision first stage, from sub-symbolic statistical model-based image segmentation to symbolic physical model-based image preliminary classification (pre-classification). As proof-of-concept of symbolic deductive pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent (general-purpose) Satellite Image Automatic MapperTM (SIAMTM) is selected from existing literature [16,17,18,19,20,21,22,23,24]. To the best of these authors‘ knowledge, this is the first time a symbolic syntactic inference system, like SIAMTM, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.