Abstract

The static series compensator (SSC) has shown a significant capability to mitigate voltage dips, which are the most severe problem to sensitive loads. Also, it has been declared that the function of the SSC can be extended to work as a series active filter. This work proposes a moving-average filter to detect the fundamental component of the measured voltages and currents (needed to control the SSC) while using a double vector control algorithm to improve the transient performance of the SSC. This is made in order to accurately control the fundamental voltage component at the load terminals in the case of distorted grid voltage. Furthermore, a selective harmonic compensation strategy is applied to filter out the grid harmonics. The operation of the SSC under distorted utility conditions and voltage dips is discussed. The validity of the proposed controller is verified by experiments, carried out on a 10-kV SSC laboratory setup. Experimental results have shown the ability of the SSC to mitigate voltage dips and harmonics. It is also shown that the proposed controller has improved the transient performance of the SSC even under distorted utility conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.