Abstract

Flooding events have been negatively affecting the Republic of Kazakhstan, with higher occurrence in flat parts of the country during spring snowmelt in snow-fed rivers. The current project aims to assess the flood hazard reduction capacity of Alva irrigation system, which is located in the interfluve area of Yesil and Nura Rivers. The assessment is performed by simulating spring floods using HEC-RAS 2D and controlling the gates of the existing system. A digital elevation model of the study domain was generated by integration of Sentinel-1 radar images with the data obtained from bathymetrical survey and aerial photography. Comparison of the simulated inundation area with a remote sensing image of spring flood in April 2019 indicated that the main reason for differences was due to local snowmelt in the study domain. Exclusion of areas flooded by local snowmelt, which were identified using the updated DEM, from comparison increased the model similarity to 70%. Further simulations of different exceedance probability hydrographs enabled classification of the study area according to maximum flood depth and flood duration. Theoretical changes on the dam crest as well as additional gates were proposed to improve the system capacity by flooding agriculturally important areas, which were not flooded during the simulation of the current system. The developed model could be used by local authorities for further development of flood mitigation measures and assessment of different development plans of the irrigation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.