Abstract

The design and the operation of a frequency-tunable continuous-wave (CW) 330-GHz gyrotron oscillator operating at the second harmonic of the electron cyclotron frequency are reported. The gyrotron has generated 18 W of power from a 10.1-kV 190-mA electron beam working in a TE-4,3 cylindrical mode, corresponding to an efficiency of 0.9%. The measured start oscillation current over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE-4,3,q, where q = 1-6. Moreover, the observed frequency range in the start current measurement is in reasonable agreement with the frequency range obtained from numerical simulations. The minimum start current was measured to be 33 mA. A continuous tuning range of 1.2 GHz was experimentally observed via a combination of magnetic, voltage, and thermal tuning. The gyrotron output power and frequency stabilities were assessed to be ±0.4% and ±3 ppm, respectively, during a 110-h uninterrupted CW run. Evaluation of the gyrotron output microwave beam pattern using a pyroelectric camera indicated a Gaussian-like mode content of 92% with an ellipticity of 28%. The gyrotron will be used for 500-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.