Abstract

The Silicon Carbide detector (SiC) is an object of research as an alternative to diamond detectors for fast neutron detection and spectrometry where harsh environments are an issue, like in Tokamaks. Since future breeding blankets mock-ups will feature temperatures up to 550 °C, diamond detectors were characterized in the past, finding limitations in their functionality at high temperatures. This paper expands on the previous work by proving the detection of fast neutrons with good detection parameters of a 250 μm-thick 4 H-SiC detector prototype at temperatures up to 250 °C, highlighting the detector's excellent resilience to temperature. The experiment is conducted with instrumentation similar to the one used in the past with diamond detectors, using as source of irradiation the Frascati Neutron Generator (FNG) in ENEA, which is accelerator driven neutron source based on deuterium-tritium (DT) fusion reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.