Abstract

PurposeThe purpose of this paper is to consider three factors, namely, intra-week demand fluctuations, interrelationship between the number of robots and order scheduling and conflicting objectives (i.e. cost minimization and customer satisfaction maximization), to optimize the robot logistics system.Design/methodology/approachThe number of robots and the sequence of delivery orders are first optimized using the heuristic algorithm NSGACoDEM, which is designed using genetic algorithm and composite difference evolution. The superiority of this method is then confirmed by a case study of a four-star grade hotel in South Korea and several comparative experiments.FindingsTwo performance metrics reveal the superior performance of the proposed approach compared to other baseline approaches. Results of comparative experiments found that the consideration of three influencing factors in the operation design of a robot logistic system can effectively balance cost and customer satisfaction over the course of a week in hotel operation and optimize robot scheduling flexibility.Practical implicationsThe results of this study reveal that numerous factors (e.g. intra-week demand fluctuations) can optimize the performance efficiency of robots. The proposed algorithm can be used by hotels to overcome the influence of intra-week demand fluctuations on robot scheduling flexibility effectively and thereby enhance work efficiency.Originality/valueThe design of a novel algorithm in this study entails enhancing the current robot logistics system. This algorithm can successfully manage cost and customer satisfaction during off-seasons and peak seasons in the hotel industry while offering diversified schemes to various types of hotels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call