Abstract

This paper presents a nine-level active-neutral-point-clamped (ANPC) based multilevel inverter (MLI) topology for grid-connected applications requiring only ten switches. The envisaged structure comprises two parts, namely five-level ANPC unit, and a two-level converter leg whose midpoint is used as another ac terminal. An ad hoc switching state redundancy based modulation strategy is used to ensure that the voltage across the flying capacitor is tightly balanced and is implemented using a look-up table further simplifies the control complexity. The performance and effectiveness of the proposed topology with its control scheme are validated through simulations and experimental tests. Comparison with other MLIs is included to highlight the merits of the proposed topology. From the results, it will be shown that the proposed inverter requires the least part count as compared to other topologies with the same performance and output quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call