Abstract

This paper proposes a control scheme of a grid-connected doubly-fed induction generator (DFIG) wind turbine with series grid-side converter (SGSC) to improve the control and operation performance of DFIG system during network unbalance. The behaviors of DFIG system with SGSC under unbalanced grid voltage conditions are described. The SGSC is controlled to inject voltage in series to balance the stator voltage. Therefore, the adverse effects of voltage unbalance upon the DFIG such as large stator and rotor current unbalances, electromagnetic torque and power pulsations are removed and the conventional vector control strategy for the rotor-side converter (RSC) remains in full force under unbalanced conditions. Meanwhile, three selective control targets for the parallel grid-side converter (PGSC), such as eliminating the oscillations in total active or reactive power, or no negative-sequence current injected to the grid are identified and compared. Besides, the proportional resonant controllers in the stationary reference frame are designed for both the SGSC and PGSC to further improve the dynamic performance of the whole system. Finally, the ratings and losses of the SGSC and the injected transformer are discussed and the effectiveness of the proposed control scheme is verified by the simulation results of a 2 MW DFIG-based wind turbine with SGSC under steady state and small transient grid voltage unbalance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.