Abstract

Continuous multistage mixed suspension and mixed product removal (MSMPR) crystallization processes are useful for the large-scale production of particulate systems. However, the design of operating strategies to meet specific objectives and materials has not been completely investigated. In this work, the effect of important crystallization kinetic parameters on the optimal operating strategy was examined. The important parameters are the kinetic constants of the primary and secondary nucleation rates, the orders of the nucleation and growth rates, and the number of crystallizer stages. The analyses revealed that a drastic cooling strategy in the primary nucleation dominant region and linear cooling in the secondary nucleation dominant region are best for producing large particle sizes. A stage number of ∼3 is effective in both regions. These results can be utilized to roughly determine the operating strategy for a process, if the crystallization kinetic parameters are already roughly known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.