Abstract

Oxides on the surface of Pt electrodes are largely responsible for the loss of their electrocatalytic activity in the oxygen reduction and oxygen evolution reactions. In this work we apply near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to study in operando the electrooxidation of a nanoparticulated Pt electrode integrated in a membrane-electrode assembly of a high temperature proton-exchange membrane under water and water/oxygen ambient. Three types of surface oxides/hydroxides gradually develop on the Pt surface depending on the applied potential at +0.9, + 2.5, and +3.7 eV relative to the 4f peak of metal Pt and were attributed to the formation of adsorbed O/OH, PtO, and PtO2, respectively. The presence of O2 in the gas-phase results in the increase of the extent of surface oxidation, and in the growth of the contribution of the PtO2 oxide. Depth profiling studies, in conjunction with quantitative simulations, allowed us to propose a tentative mechanism of the Pt oxidation at high anod...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.