Abstract

Multidimensional ABX3 hybrid perovskites three-dimensionally confined dot-shaped structure demonstrate versatile potential to photoelectrochemical cells for water splitting, hydrogen generation, solar cells, and light-emitting diodes. To apply perovskite quantum dots (PQDs) to solar-driven chemistry and optoelectronic devices, understanding the photoinduced charge carrier dynamics of PQDs under electrochemical conditions or applied bias are important. In this study, the detailed transformation mechanism of formamidinium lead iodide perovskite quantum dots under electrochemical conditions was studied by tracking the products of the reaction through cyclic voltammetry, X-ray photoemission spectroscopy, in-situ UV–visible spectroelectrochemistry, etc. Through comprehensive characterizations, the mechanism of irreversible oxidative transformation of perovskite quantum dots was presented. This study provides deeper insight into the electrochemical behavior of PQDs for successful solar-driven chemistry and optoelectronic device applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call