Abstract

All-solid-state Li-O2 batteries that use ceramic electrolytes have been suggested to overcome the limitations posed by the decomposition of organic electrolytes. However, these systems show a low discharge capacity and high overpotential because the discharge product Li2O2 has low electronic conductivity. In this study, all-solid-state planar-type Li-O2 cells were constructed using a lithium anode, a Li1·3Al0·3Ti1·7(PO4) (LATP) inorganic solid electrolyte, and an air electrode composed of a Pt grid pattern. The discharge/charge process was observed in real time in a humidified O2 environment for the first time, which clarified both the hydration process of the discharge products and the charging process of the hydrated discharge products. The discharge product (LiOH) could be easily hydrated in water, which would facilitate ion transport, thereby increasing the discharge capacity and discharge voltage (vs Li/Li+; from 2.96 to 3.4 V). Thus, Li-O2 cells with a high energy density and a capacity of 3600 mAh/gcathode were achieved using a planar Pt-patterned electrode in a humidified O2 environment. This study is the first to demonstrate the hydration of the discharge products of a Li-O2 cell in humidified O2. Based on a thorough understanding of the hydration phenomenon/mechanism, our findings suggest new strategies for developing high-energy-density all-solid-state Li-O2 batteries using a simple, easy-to-manufacture planar Pt-patterned cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call