Abstract

NO reduction by CO on Rh(111) was investigated by near-ambient pressure X-ray photoelectron spectroscopy, mass spectrometry, and kinetic analysis. Under exposure to NO + CO mixed gases and with heating the surface from room temperature to 450 °C, NO dissociation and NO reduction reaction start simultaneously independent of gas pressure ratio of NO/CO, which indicates that NO dissociation triggers this reaction. From kinetic analyses based on observed adsorbate coverages under reaction conditions, the following two points are suggested: (i) NOhollow is a reactive species for N2 and N2O formation via N + NO reaction. (ii) At low temperatures, the N + NO reaction is dominant for N2 production, whereas above around 400 °C, the N + N reaction becomes dominant, which leads to an increase in N2 selectivity at the higher temperatures. Compared with the NO + CO reaction on Ir(111) surfaces, which exhibits a high N2 selectivity, the adsorption site of reactive NO and the availability of vacant surface sites could b...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call