Abstract

Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface sites from the underlying bulk material under applied potential in the presence of an electrolyte layer. Here, we demonstrate that operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) is a powerful spectroscopic method which offers critical surface chemistry insights in CO2 electroreduction with sub-electronvolt energy resolution using hard X-rays. Combined with the high surface area-to-volume ratio of 5 nm copper nanoparticles, operando HERFD-XAS allows us to observe with clear evidence the breaking of chemical bonds between the ligands and the Cu surface as part of the ligand desorption process occurring under electrochemical potentials relevant for the CO2 reduction reaction (CO2RR). In addition, the dynamic evolution of oxidation state and coordination number throughout the operation of the nanocatalyst was continuously tracked. With these results in hand, undercoordinated metallic copper nanograins are proposed to be the real active sites in the CO2RR. This work emphasizes the importance of HERFD-XAS compared to routine XAS in catalyst characterization and mechanism exploration, especially in the complicated electrochemical CO2RR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.