Abstract

In this study, micro thermocouples were applied to operando measure the through-plane interlayer temperatures of the proton exchange membrane (PEM) electrolyzer cell. The heat transfer, mass transfer, and electrochemical processes inside the cell were analyzed under various operating conditions. By comparing the temperature characteristics and electrolysis performance of the cell in two different heating modes, the effect of the flow rate on the cell performance was elucidated, and the interlayer temperature distribution in the through-plane direction was investigated. The dynamic response characteristics of temperature and voltage under abrupt changes in current density were also explored. The water starvation experiments of the electrolyzer cell revealed in detail the behaviors of the temperature runaway and the voltage runaway. The results indicated that the heating mode of water preheating and cell heating effectively reduced the difference in the internal temperatures and maintained the cell performance. Under dynamic operating conditions, temperature exhibited a longer stabilization time than voltage. The onset of temperature runaway and voltage runaway induced by water starvation was random and unpredictable, which would irreversibly damage the electrolysis performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call