Abstract
In 2007, Vallette built a bridge across posets and operads by proving that an operad is Koszul if and only if the associated partition posets are Cohen-Macaulay. Both notions of being Koszul and being Cohen-Macaulay admit different refinements: our goal here is to link two of these refinements. We more precisely prove that any (basic-set) operad whose associated posets admit isomorphism-compatible CL-shellings admits a Poincare-Birkhoff-Witt basis. Furthermore, we give counterexamples to the converse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.