Abstract

AbstractThe direct depletion of lactate accumulated in the tumor microenvironment holds promise for cancer therapy but remains challenging. Herein, we report a one‐pot synthesis of openwork@ dendritic mesoporous silica nanoparticles (ODMSNs) to address this problem. ODMSNs self‐assembled through a time‐resolved lamellar growth mechanism feature an openworked core and a dendritic shell, both constructed by silica nanosheets of ≈3 nm. With a large pore size, high surface area and pore volume, ODMSNs exhibited a high loading capacity (>0.7 g g−1) of lactate oxidase (LOX) and enabled intratumoral lactate depletion by >99.9 %, leading to anti‐angiogenesis, down‐regulation of vascular endothelial growth factor, and increased tumor hypoxia. The latter event facilitates the activation of a co‐delivered prodrug for enhancing anti‐tumor and anti‐metastasis efficacy. This study provides an innovative nano‐delivery system and demonstrates the first example of direct lactate‐depletion‐enabled chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.