Abstract
In the two-envelope problem, one is offered a choice between two envelopes, one containing twice as much money as the other. After seeing the contents of the chosen envelope, the chooser is offered the opportunity to make an exchange for the other envelope. However, it appears to be advantageous to switch, regardless of what is observed in the chosen envelope. This problem has an extensive literature with connections to probability and decision theory. The literature is roughly divided between those that attempt to explain what is flawed in arguments for the advantage of switching and those that attempt to explain when such arguments can be correct if counterintuitive. We observe that arguments in the literature of the two-envelope problem that the problem is paradoxical are not supported by the probability distributions meant to illustrate the paradoxical nature. To correct this, we present a distribution that does support the usual arguments. Aside from questions about the interpretation of variables, algebraic ambiguity, modal confusions and the like, most of the interesting aspects of the two-envelope problem are assumed to require probability distributions on an infinite space. Our next main contribution is to show that the same counterintuitive arguments can be reflected in finite versions of the problem; thus they do not inherently require reasoning about infinite values. A topological representation of the problem is presented that captures both finite and infinite cases, explicating intuitions underlying the arguments both that there is an advantage to switching and that there is not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.