Abstract
Cold dense quark matter is in a crystalline color superconducting phase wherever pairing occurs between species of quarks with chemical potentials whose difference \delta\mu lies within an appropriate window. If the interaction between quarks is modeled as point-like, this window is rather narrow. We show that when the interaction between quarks is modeled as single-gluon exchange, the window widens by about a factor of ten at accessible densities and by much larger factors at higher density. This striking enhancement reflects the increasingly (1+1)-dimensional nature of the physics at weaker and weaker coupling. Our results indicate that crystalline color superconductivity is a generic feature of the phase diagram of cold dense quark matter, occurring wherever one finds quark matter which is not in the color-flavor locked phase. If it occurs within the cores of compact stars, a crystalline color superconducting region may provide a new locus for glitch phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.