Abstract

This paper explores proposing interpreting methods from explainable artificial intelligence to address the interpretability issues in deep learning-based models for classroom dialogue. Specifically, we developed a Bert-based model to automatically detect student talk moves within classroom dialogues, utilizing the TalkMoves dataset. Subsequently, we proposed three generic interpreting methods, namely saliency, input*gradient, and integrated gradient, to explain the predictions of classroom dialogue models by computing input relevance (i.e., contribution). The experimental results show that the three interpreting methods can effectively unravel the classroom dialogue analysis, thereby potentially fostering teachers' trust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.