Abstract

The design of a fire resistant coating for tunnel passive fire protection and its performance under thermal loading are presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. The physical, mechanical and thermal properties of the K-geopolymer were determined and compared to those of some commercially available fire resistant materials. Its behavior upon exposure to fire was assessed by subjecting a concrete slab, coated with a 5 cm thick K-geopolymer layer, to thermal loading under the RijksWaterStaat (RWS) temperature–time curve, which is considered as the most severe prescribed tunnel fire scenario. During the test, the geopolymer/concrete interface temperature remained under 280 °C, which is 100 °C lower than the RWS test requirement, proving the effectiveness of the material as a thermal barrier. In addition, the K-geopolymer retained its structural integrity after the test, without any significant macroscopic damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.