Abstract

ObjectivesWe examined whether the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel openers (KCOs) block myocardial hypertrophy and whether the 70-kDa S6 kinase (p70S6K) or extracellular signal-regulated kinase (ERK)-dependent pathway is involved. BackgroundLong-term inhibition of nitric oxide (NO) synthesis induces cardiac hypertrophy independent of blood pressure, by increasing protein synthesis in vivo. The KCOs attenuate calcium overload and confer cardioprotection against ischemic stress, thereby preventing myocardial remodeling. MethodsTwelve Wistar-Kyoto rat groups underwent eight weeks of the drug treatment in combination with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME), the inactive isomer dω-nitro-l-arginine methyl ester, KCOs (nicorandil, 3 and 10 mg/kg per day, or JTV-506, 0.3 mg/kg per day), or the KATP channel blocker glibenclamide. The l-NAME was also used with hydralazine, the p70S6K inhibitor rapamycin, or the mitogen-activated protein kinase inhibitor PD98059. Finally, the left ventricular weight (LVW) to body weight (BW) ratio was quantified, followed by histologic examination and kinase assay. ResultsThe l-NAME increased blood pressure and LVW/BW, as compared with the control agent. The KCOs and hydralazine equally cancelled the increase in blood pressure, whereas only KCOs blocked the increase in LVW/BW and myocardial hypertrophy induced by l-NAME. The l-NAME group showed both p70S6K and ERK activation in the myocardium (2.3-fold and 2.0-fold increases, respectively), as compared with the control group, which was not reversed by hydralazine. Selective inhibition of either p70S6K or ERK blocked myocardial hypertrophy. The KCOs prevented the increase in activity only of p70S6K. Glibenclamide reversed the effect of nicorandil in the presence of l-NAME. ConclusionsThe KCOs modulate p70S6K, not ERK, to attenuate myocardial hypertrophy induced by long-term inhibition of NO synthesis in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.