Abstract

The present study examined whether opening of adenosine triphosphate (ATP) sensitive K+ (KATP) channels can enhance 1-methyl-4-phenylpyridinium (MPP+)-induced hydroxyl radical (OH) generation in rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5nmol/ml per min) was infused through a microdialysis probe to detect the generation of OH as reflected by the non-enzymatic formation of 2.3-dihydroxybenzoic acid (DHBA) in the striatum. MPP+ (5mM) enhanced generation of OH with concomitant increased efflux of dopamine (DA). Cromakalim (100μM), a KATP channel opener, through the microdialysis probe significantly increased both DA efflux and OH formation induced by MPP+. Another KATP channel opener, nicorandil (1mM), also increased the level DA or DHBA, but these changes were not significant. However, in the presence of glibenclamide (10μM), a KATP channel antagonist, and the increase of MPP+-induced DA or DHBA were not observed. Cromakalim (10, 50 and 100μM) increased MPP+-induced DHBA formation in a concentration-dependent manner. However, the effects of cromakalim in the presence of glibenclamide were abolished. These results suggest that opening of KATP channels may cause OH generation by MPP+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.