Abstract

AbstractCombining Ising‐type magnetic anisotropy with collinear magnetic interactions in single‐molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15‐MCCu‐5] (1‐Dy) SMM, where a DyIII ion is held in a central pseudo‐D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15‐MCCu‐5] units with a single hydroxide bridge yields the double‐decker {Dy[15‐MCCu‐5]}2 (2‐Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2‐Dy that are approximately 200 000 times slower at 2 K than for 1‐Dy in zero external field. Whereas 1‐Dy and the YIII‐diluted Dy@2‐Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2‐Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy–Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d–f SMMs up to 625 cm−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.