Abstract

Open hardware-based microcontrollers, especially the Arduino platform, have become a comparably easy-to-use tool for rapid prototyping, stand-alone systems and implementing creative solutions. Such devices in combination with dedicated frontend electronics, external sensors and modems can offer low cost alternatives for student projects and independently operating small scale instrumentation. The capabilities of sensor-to-sensor communication can be extended to data taking and signal analysis at decent rates. Low-cost approaches to environmental monitoring will be critical for developing the evidence base needed to better understand the climate system, specifically in our case for understanding the water cycle. Off-the-shelf-components-based, internet-connected devices are easy to monitor and maintain, low risk and capable of extensive deployment to address the challenge of geographical variability and can address user- and site-specific demands. We present our project of a data logger platform "nCollector" based on an Arduino DUE, including data storage on SD cards, serial data transmission via USB, RS485, SDI-12, telemetry via GSM (4G), Nb-IoT and LoRa including its power supply and a minimal user interface. For outdoor instrumentation we specifically designed a solution with a low power demand of 0.2 W in order to realize 24/7 operation under harsh conditions with medium sized PV panels and batteries. With our presentation we want to provide a model case for other researchers to take inspiration from, share our experience with building and deploying over 100 systems all over Europe and help engaging the community to enhance their own instrumentation and data taking. 

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call